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Dynamo theory offers the most promising explanation of the generation of the sun's

magnetic cycle. Mean field electrodynamics has provided the platform for linear and

nonlinear models of solar dynamos. However the nonlinearities included are

(necessarily) arbitrarily imposed in these models, This paper conducts a systematic

survey of the role of nonlinearities in the dynamo process, by considering the behaviour

of dynamo waves in the nonlinear regime. It is demonstrated that only by considering
realistic nonlinearities that are non-local in space and time can modulation of the basic

dynamo wave be achieved. Moreover this modulation is greatest when there is a large

separation of timescales provided by including a low magnetic Prandtl number in the

equation for the velocity perturbations.
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1. INTRODUCTION

Magnetic activity is found in many astrophysical bodies on all length-

scales. It is now widely believed that stellar magnetic fields are

generated by hydromagnetic dynamos in which the field is maintained

against ohmic dissipation by the velocity fields within the star.

Research into dynamo theory has received much attention in the

recent past and many new approaches have recently been introduced.

Specific attention has often focussed on the origin of the solar

magnetic field, as the sun is the only star in which the magnetic field
can be observed in detail.
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The basic eleven year solar cycle is modulated on a longer timescale.

For approximately 70 years during the seventeenth century, the

amplitude of magnetic activity was dramatically reduced (Eddy, 1976;

Ribes and Nesme-Ribes, 1993). This minimum in activity (The

Maunder Minimum) can also be detected in the abundance records

of terrestrial _4C and H)Be, with both records indicating the occurrence

of several previous minima in magnetic activity (Stuiver, 1994;
Beer et al., 1991)

Numerical studies of the generation of magnetic field in the sun have

usually 1:allen into one of three categories (for more details see Weiss

and Tobias, 1997). Numerical integration of the fully self-consistent

dynamo equations (Gilman, 1983; Glatzmaier, 1985) demonstrate that

dynamo cycles can be found. However these integrations are expensive

to perform and are only feasible using over-simplified physics.
Consequently, a number of alternative mean-field models have been

studied (see e.g., Brandenburg et al., 1989; Kitchatinov et al., 1994)

that attempt to give a greater insight into the temporal and spatial

behaviour of nonlinear dynamo models. These models have met with

varying degrees of success, producing modulated cycles and chaotic

solutions, but the exact r61e of the various competing nonlinear

mechanisms (e.g., quenching) is unclear. Moreover the modulation

lbund in these models is different to the behaviour found in the sun.

Modulation of the basic cycle is associated with large changes in the

parity (symmetry) of solutions, whilst the sun undergoes significant

change in the amplitude of oscillation with only very small changes in

parity (Watari, 1996; Yau, 1988).

The third approach is to use the recent advances made in the field of

nonlinear dynamics to describe the behaviour of dynamo models. To

illustrate how various aspects of solar magnetic activity may arise, it is

often necessary to study toy models. These systems are not predictive,

but they do enable the generic properties common to fully self-

consistent dynamos and idealised mean field models to be easily

understood (Weiss, 1993). This has been dubbed Astromathematics by

Spiegel (1995). One approach is to concentrate on the alternation

between active and quiescent periods. This behaviour, termed 'on-off

intermittency' by Spiegel (1995), can be modelled in a number of ways.

The first of these is aperiodic switching. This switching may rely on

stochasticity [studied in detail in full PDE simulations by Choudhuri
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(1992) and Ossendrijver and Hoyng (1996)] which is only likely to be

of importance if the dynamo is marginal or, more naturally_

deterministic chaos (Platt, 1994; Plattet al., 1994; Spiegel, 1995).
Indeed some models have been constructed that use both mechanisms

(Schmitt et al., 1996). Another technique is to consider the symmetries

inherent in the problem and to construct a model that relies on the

interactions (and resonances) between modes with different symme-

tries. Knobloch and Landsberg (1996) find that for such a model two

types of minima may be found. A complementary technique is to

consider truncated representations of the mean-field dynamo equa-

tions. For example, Weiss et al. (1984) extended Parker's (1955, 1979)

linear dynamo wave calculations to include nonlinear effects. They

constructed a sixth order system of ordinary differential equations.

This system, a complex generalisation of the Lorenz equations, yielded

three successive Hopf bifurcations as the dynamo number D was

increased. Multiply-periodic solutions lay on a three-torus in phase

space. As D was increased further the torus was destroyed and

aperiodic solutions were found. The model can be simplified to a fifth-

order system whose bifurcation structure has been studied in detail

(Jones et al., 1985). These low-order models are open to the criticism

that any behaviour found may be an artifact of the severe

approximations made in truncating the system. For a model to be of

astrophysical relevance, any properties should remain robust under

small changes in the approximations and assumptions made. Covas

et al. (1997) investigated the structural stability of a 'dynamic c_-effect'

dynamo based on a model proposed by Schmalz and Stix (1991). They

demonstrated that small changes in the level of truncation of dynamic

forcing could have drastic consequences on the results of integrations.

A different viewpoint was adopted by Tobias et al. (1995). They

considered a robust third-order model constructed using the results of

normal form theory and reproduced the bifurcation sequence found in

the truncated model of Weiss et al. (1984). Although such results are

expected to be robust, it has still to be demonstrated that this
bifurcation structure would continue to be found in more realistic

(PDE) models.

To describe the dynamic behaviour of the dynamo it is vital first to

understand the r61e of the nonlinear terms in the equations. In many

mean-field models the nonlinear effect of the Lorentz force is included
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to limit thegrowthof themagneticinstability.Theback-reactionof
themagneticfieldonthevelocityisoftenparametrisedinsuchmodels.
Thesmall-scalemotions,whichleadto thect-effectandturbulent
diffusivity,aresensitiveto changesin the magneticfield strength
(microdynamicquenching).An ad-hocapproachusuallyusedin
nonlinearmean-fieldmodelsis to parametrisethe actionof the
magneticfieldonthetrubulentmotionsby includinga-quenching(see
e.g.,Stix, 1972).Forconsistencytheturbulentdiffusivityshouldbe
treatedinasimilarmanner,becausebothtensorsarederivedfromthe
sameturbulenceasfirst notedby RobertsandSoward(1975).The
exactformof thequenchingof thec_-effectandturbulentdiffusionis
an openquestionrequiringthe investigationof sophisticated
numericalmodels.Whatisclearhoweveristhatbothof theseeffects
shouldbesuppressedbytheactionof theLorentzforce.

The Lorentz force must also modify the large-scale velocity (a

macrodynamic nonlinearity). This has often been included in models

by quenching the differential rotation (_,-quenching). More sophisti-

cated models include the back-reaction of the small-scale magnetic

field on the A-effect in the equation for the mean velocity field (e.g.,

Kitchatinov et al., 1994). However the most natural consequence of

the Lorentz force is the velocity perturbation driven by the mean

magnetic field. This macrodynamic process has been termed the

"Malkus-Proctor effect" after the work of Malkus and Proctor (1975),

where it was used as the nonlinearity in an c_2-dynamo model. Because

the inclusion of this nonlinearity requires the solution of another

equation coupled to the dynamo equation it has not been as

extensively studied as c_- or oJ-quenching.

In this paper the effects of including both the microdynamic

quenching mechanisms and the Malkus-Proctor effect on the proper-

ties of dynamo waves are investigated. It is necessary to isolate the role

of nonlinearities in the dynamo process from other effects that may be

of importance in dynamo models. For example boundary conditions

(Worledge et al., 1997 Tobias et al., 1997) and inhomogeneities

(Meunier et al., 1997) can both play a crucial r61e in determining the

nature of solutions. The consequence of imposing various nonlinea-
rities on wave-like solutions should therefore be determined before an

attempt is made to include them in more realistic models. In this paper

the simplest physically relevant model of a solar dynamo is considered.
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The model is an extension of the one proposed by Parker (1993) for a

dynamo acting at the base of the convection zone and characterised by

a layer of strong shear lying beneath a layer where the c_-effect is

strong. In the Section 2 the important results of Parker are

summarised and the features which are to be included in the new

model are introduced. In Section 3 the new dynamo model is derived

from the c_,3 dynamo equations, and the linear theory for the new

model is included in Section 4. Simple nonlinear behaviour is discussed

in Section 4 where the consequences of including (microscopic)

quenching mechanisms in the model are outlined. It is demonstrated

that r/-quenching plays a very different role to simple equilibrating

mechanisms such as c_-quenching. The most important results are
contained in Section 5 where the "Malkus-Proctor effect" is

introduced and interesting temporal behaviour can be found. The

bifurcation structure of the system is analysed and related to that

found in earlier models, A discussion of the consequences of the results

for solar and stellar dynamo theory is then included in Section 6.

2. THE PARKER SURFACE DYNAMO WAVE

The linear model considered by Parker (1993) demonstrates how a

dynamo at the interface of the solar convection zone and radiative

interior might work. The model provides the motivation this paper

and, for this reason, a brief summary of the set-up and results for this

system is included in this section.

Parker constructed an extension of his initial (1955) 'Dynamo Wave'

model in order to take into account the available observational data.

A model of the base of the convection zone and the overshoot region

which lies below is considered. Helioseismology (e.g., Thompson et al.,

1996) indicates that there is a thin layer of radial shear at the base of

the convection zone. This region of strong shear in the tachocline

makes it a good candidate for the site of production of toroidal flux.

However magnetic buoyancy of this strong azimuthal field needs to be

suppressed in order to prevent the flux escaping to the surface on a

timescale too short for the effective operation of a dynamo. How

might the confinement of the toroidal field to this region be achieved?

Parker argues that the total amount of azimuthal flux beneath active
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latitudesis 1023- 1024 Maxwells. If all this flux were to be concentrated

into a thin region at the base of the convection zone the field intensity

would need to be of the order of 2.5 kilogauss or more. The strong

field would act back on the turbulence, suppressing the eddy diffusivity

(via a nonlinear mechanism) and confining the field to a thin region.

The problem is now that a field of this strength would also quench the

a-effect, meaning that there would now be no generation of poloidal

field in this region. The solution is to notice that, if the field is strongly

confined, the suppression of the turbulent diffusivity and c_-effect is
local. The toroidal field in the bulk of the convection zone is weak and

hence the cyclonic turbulence would only be weakly modified. Indeed

Charbonneau and MacGregor (1996) have shown that this type of

interface dynamo can work even if the (_-effect is as strongly

suppressed as has recently been suggested (Vainshtein and Cattaneo,

1992; Cattaneo and Hughes, 1996). The convection zone is therefore

the favoured site for production of poloidal flux from toroidal flux and

the dynamo cycle is completed. The toroidal flux generated by the

strong shear in the tachocline diffuses slowly into the convection zone

where it is converted by the cyclonic turbulence into poloidal flux. This

flux may then diffuse back to the overshoot region where it can act as a

source for production of toroidal field. Here the region of generation

of toroidal and poloidal fields are separated in space and the dynamo

has to rely on diffusion to operate. For this reason it is less efficient

than models which have the (_-effect and o2-effect in the same location.

Other models with the generating regions in different places (e.g.,

Steenbeck and Krause, 1969; Kleorin and Ruzmaikin 1981) have

previously been proposed.

The model is constructed as follows. Parker considers local

Cartesian coordinates with the origin at the base of the convection

zone [as shown in Fig. l(a)]. The system is two-dimensional and the

surface z = 0 is the upper boundary of a region (z < 0) of uniform shear,

G = dvo/dz, where the eddy diffusivity is reduced to a value n and there

is no a-effect. The region z > 0 is convective and hence has a large

turbulent diffusivity (71)and a strong c_-effect, but no shear; a diagram

of the cartesian model is shown in Figure l(b). Parker considers plane-

wave solutions proportional to e_r to the linear dynamo equations in

the 2 layers, and the critical parameter is the non-dimensional dynamo

number D = Ga/rl2k 3 where k is the wavelength of the solution in the
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Z=--I

CONVECTION ZONE

STRONG TURBULENCE

OVERSHOOT REGION

STRONG SHEAR

FIGURE 1 The local Cartesian coordinates used by Parker (1993).

x-direction. For D<Ocrit all plane wave solutions decay away as

t_oc. However for D>Dcrit, R(cr)>0 and exponentially growing

solutions may be found. Parker examines two cases in detail. The first

is when the ratio of the diffusivities in the two layers is unity so

#2 _ n/_l = I. In this case the dispersion relation that determines

reduces to a simple form and D_rit may easily be found. This simple

calculation establishes the existence and nature of the solutions. They

take the form of a dynamo surface wave propagating along the

interface between the region of cyclonic convection and the region of

shear. The second case considered is the limit n << 7/so that t_2 << 1.

This represents the situation of very small flux transport in the region

of differential rotation (z < 0). Here the calculation yields a vertical

scale for the toroidal field in z < 0 that is substantially smaller than that

in z > 0 and the azimuthal field in z < 0 is confined to a thin layer

pressed up against the underside of z= 0. The field in z > 0 is more

diffuse. Further calculation yields the interesting result that in order

for the calculation to be consistent, the relationship

2
nb_, x cx _/Bma x (1)

must hold where bmax and Bma x are the maximum values of the

toroidal field in the regions z < 0 and z > 0 respectively. The relation-

ship in (1) is kinematic, and for a given /2 determines the ratio
2 2

bmax/Bma x. This scenario is therefore entirely self-consistent if the

eddy-diffusivity is suppressed inversely with the magnetic energy

density.
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Becausethecalculationis linearit doesnotcontainanyinformation
abouthowthemagneticfieldmayactin thenonlinearregime.Parker
hypothesisedthat some form of dynamical balance is achieved in the

sun, and used the example of the action of Maxwell stresses on Alfv6n

waves to illustrate a possibility for this balance. In this paper we

examine how the addition of nonlinearities changes the surface wave

model, and which properties of the linear model remain robust in the

nonlinear regime. In the next section, the nonlinear dynamo problem

is discussed and the results of previous nonlinear models are presented.

3. DERIVATION OF THE MODEL

The starting point of the derivation is the mean field dynamo

equation

OB
Ot Vx(ux B+c_B-_Tx B), (2)

where B and u are the mean magnetic field and velocity field of the

plasma respectively. The turbulent diffusivity (z/) and the c_-effect arise

from the mean interaction of the small-scale fluctuating magnetic and

velocity fields. The dynamo equations are considered in the two-

dimensional Cartesian coordinates considered by Parker. Immediate

progress can be made by decomposing the magnetic field into toroidal

and poloidal parts, i.e.

B _ B(x, :)_ + v × [A(x, z)_]. (3)

Equation (2) is clearly linear in the magnetic field B and for a given

velocity field solutions are either exponentially growing or decaying.

As noted in the introduction, nonlinearities may be introduced in the

model by parameterizing the back-reaction of the magnetic field on the

turbulence (c_ and r/-quenching).

In order to include the effect of the magnetic field in driving a

velocity perturbations (macrodynamic nonlinearities) it is necessary to

consider the equation for the large-scale velocity u. The momentum

equation for the mean velocity field u is given by

p _-+(u.V)u ---Vp+V.,7+2_xu+jxB+V.:, (4)
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where p is the density, p is the pressure _ is the rotation of the star, _ris

the stress tensor and j = 1/#o_7 × B is the large-scale current. The

effects of rotation and magnetic field on the velocity are clear in (4),

and the other forces (e.g., gravity, thermal forcing, Reynolds stresses

from the small-scale turbulence) are contained in the tensor ,_.

Progress is made by assuming that the large-scale velocity consists

of two separate components. The first component would be present in

the absence of a magnetic field, and is generated by purely

hydrodynamic effects. This velocity is driven by rotational, gravita-

tional and thermal effects and provides the basic state of the model.

The second component arises owing to the back-reaction of the

magnetic field via the Lorentz force. It is important to stress here that

the Lorentz force generated by the dynamo will drive a meridional

flow in addition to the toroidal velocity considered here. Here we

ignore this effect and concentrate solely on the toroidal velocity

perturbations. It will be interesting in the future to study models where
the latitudinal shear is also included and to investigate the interaction

of the driven meridional flow with this shear.

In the model, the above statements correspond to setting

u -- U + v = U(x,z) i + v(x,z)i, (5)

where U is the imposed basic large-scale velocity [given by

dU/dz = G(z); G(z) is the shear defined by the Parker model] and v

is the velocity perturbation that is driven by the macroscopic magnetic

stresses due to the Malkus-Proctor effect.

In the calculations that follow, the vertical extent of the layer is

considered to be small compared to a density scale height and

therefore the density p is set to be a constant. This is a reasonable

assumption for a dynamo located in a thin region at the base of the

solar convection zone, where the density scale height is large. Here we

consider solutions of the coupled system (2) (5). These equations are

non-dimensionalised by setting

x = L_,t = L2/rloL rl = ,lob(z), o = _of(z), G(z) = _'0g(z),

(5a)

v(z) = Lw'o?(z), A(z) = LBo_:o,4(x,z), B(x,z) - BoB(x,z), (5b)
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where L is a characteristic lengthscale in the z-direction. In the limit

where the shear is strong in comparison with the a-effect (the a_ limit)

the following equations are obtained

OA [02A 02A]

h 10__2 + _Tz2[t..I - _ +fB, (6a)0-7 =

OB [02 B 02 B] Oh OB I _zz] OA Ov OA0_-=h[_+_-z2J + O_ O--z+ D g ( z ) + _x - D -_xx_z , (6b)

Ov [02v 02v] OhOv FOBOA O_OB] (6c)oS= h[bv+ J +_+TlOzOx o. Ox]'

where r = uo/r/o(the magnetic Prandtl Number) is assumed to be a
constant and

aOCoO L3 B2oaoL

D -- 712o , T - polzo_l_wo" (7)

Here D, the non-dimensional dynamo number, is a measure of

the efficiency of the dynamo giving the strengths of the c_ and

effects. The parameter T is therefore the product of the 'a-effect

Reynolds number' R_ = aoL/71o and the (modified) Elsasser Number

A = B2/ P0#0rt0_o0. It is important to note at this point that, because

this parameter contains the quotient a0/_o0, the sign of T is the same

as that of the dynamo number D, i.e. if the dynamo number is chosen

to be negative because the product R,_R_ is negative then for consist-

ency the parameter T is negative also.

Equation (6) is to be solved in a two-dimensional layer -1 < z < 1,

0 _ X < Xmax for suitable choices of the functions j; g, and h. Here we set

f(z,B)= ½[l+tanhE(z-z3)][1-e --5(:-z°) ]Q_(B), z > z0,

f(z)Q_(B) 0 z < zo,

(S)

g(z,B)= } {½[1-tanhE(z-z2)][l-e-ZS(_ _')_]Q_(B), z<zl,
_,(z)Q_(B) = O, z > zl,

(9)
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h(z,B)- _lo = } { l [l+tanhE(z_zs)][l_e-25(: zo)2]Qt,(B), z > zo,
t_(z)Q_,(B) _1o, z < zo,

(lO)

where E, z0, z_, z2, z3 are all real parameters that may in principle be

varied. The nonlinear quenching mechanisms to be employed are given

by Qo(B), Q_(B)' and Q,(B),with the level of quenching depending on

the value of a, tc and # respectively. Both local and global (where the

quenching is inversely proportional to the average energy over the

period of a wave) quenching laws will be investigated.

It is difficult to visualise the form of the c_-effect, shear and turbulent

diffusion from the mathematical formulae (8)-(10), and so an example

of the imposed profiles for the c_-effect, w-effect and turbulent

diffusivity for a particular choice of parameters is shown in Figure 2.

This figure shows that the profiles are similar to those considered by

Parker in his linear model (shown in Fig. 1). The c_-effect is limited to

the convection zone (z > 0) and the shear is strongest in the overshoot
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FIGURE 2 Profiles for the shear (dashed), alpha-effect (solid) and diffusivity (dot-

dashed) showing the z-dependence. Here z0 = -0.75, zl -- 0.0 and z3 = 0.75 are fixed.

The parameters chosen are E = 10, z2 - 0.5. Notice the region of overlap of the c_-effect
and shear.
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region (z <0). The dependence of solutions on the details of these

profiles is discussed below.

4. LINEAR THEORY

4.1. Derivation of Equations and Boundary Conditions

The aim of the linear calculation is to determine the critical dynamo

number, i.e., the value of D at which instability to dynamo action sets

in. The perturbed velocity v only arises as a result of nonlinear

interactions, and so for the linear magnetic theory v = 0. Moreover the

nonlinear quenching is not considered and so Qo = Q_ -- Q/_ - I. In

light of the work of Parker (1955,1993) the initial bifurcation is

expected to be a Hopf bifurcation to travelling wave solutions; the

preferred direction of travel depends on the sign of the dynamo

number. Travelling wave solutions of the form A- a(=)e ikx+_t,

B - h(=)e _k-_+_r are sought where cr = A + i_,. Thus the dynamo waves

have frequency ,_, and have a growth-rate A. the problem now reduces

to finding the value of D=D, for which A=0. We set a(-) -aR(z)+

ial(:),b(z) = hR(z)+ibl(z), substitute into (6) and equate real and

imaginary parts to obtain the set of coupled ODEs

h(z)fl%(:) + tl'(z)b'n(z) [ll(z)k2

h(z)b[(z) + ll'(z)b_(z) - [h(z)k2

h(:).:_(:)- [h(:)k2

h(z)aT(z) -[h(=)k 2

-- A]bR(z) - -Whl + kDg(z)al,

+ A]hl(z) - wbR -- kDg(Z)aR,

+ .x]m_(.:)= -_,., .f(:)bR,
(ll)

Initially the boundary conditions

A=B=Oatz---l,
OA

-B=0atz- 1 (12)
Oz

are chosen as reasonable conditions at the bottom and top of the layer.

Physically these conditions correspond to setting By.- Bx = 0 at the top

boundary and B = 0 at z =- 1. It is desirable to show that changing

these boundary conditions has only a weak effect on the main

properties of the solution. The linear solutions are periodic in x with
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period 27r/k. The linear theory will determine the preferred scale (i.e.,

wavenumber) in the x-direction and this will be used in the nonlinear

regime to select the aspect ratio of the box. The boundary conditions

imply that

bR = b_ = aR = al = 0,

I f = 0_bR = b/= aR = a t

Z = --l_

(13)
z=+l.

The equations and boundary conditions constitute a two-point

boundary value eigenvalue problem that may be solved numerically.

Two numerical schemes were employed, the first used the program

NRK (see Gough et al., 1976) which employs the Newton-Raphson-

Kantorovitch method using a second order centred-difference dis-

cretisation. The results were checked using the NAG routine

D02HBF, which uses a shooting method to solve the eigenvalue

problem.

4.2. Properties of Eigensolutions

The profiles shown in Figure 2 are selected as a realistic scenario for

the base of the convection zone. They are a slight modification of the

model proposed by Parker (1993). It seems likely that the transition

between the region dominated by shear and that in which there is an

efficient c_-effect will be fairly sharp, but that this will be a smooth

transition (rather than a discontinuous jump). Moreover, it would be

surprising if there were no overlap of these two regions, as the

convection may overshoot into the region of shear (and indeed the

shear may persist slightly into the base of the convection zone). It will

be shown later that the important properties of the solutions are

unaffected by the precise choice of profile, and it is only the form of the

eigenfunctions that change significantly.

There is the symmetry D--, -D, x --_ -x inherent in the problem,

and for this reason only the case D < 0 need be considered. The results

for D > 0 are the same but with the direction of travel of the dynamo

wave reversed. To determine the preferred scale in the x-direction, the

critical dynamo number for a given horizontal wavenumber k is

calculated. The calculation is then repeated for other values of k and

the curve of marginal stability is shown in Figure 3. The curve has a
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FIGURE 3 (a) Graph of critical dynamo number, D,., against wavenumber, k, for
the parameter values chosen in Figure 2. THe curve has a minimum and therefore there
exists a preferred lengthscale for the problem. (b) Graph of frequency _ against
wavenumber, k for the same parameter values as in (a) (with D = De). The frequency is a
monotonically increasing function of wave number and tends to a limit as k ---, 0.

minimum, and therefore a preferred scale. The minimum dynamo

number is IO,.I = -D_. -40.24 and this occurs at k=k* =0.78. This
value suggests that it is sensible to consider the region 0 < x < 2rr in the

nonlinear regime which corresponds to a wavenumber k = 1 for which

the critical dynamo number is D,.- -42.0. In a similar way the second

eigenvalue, corresponding to the frequency _ of the travelling wave at

the onset of dynamo action, can also be calculated as a function of

wavenumber, and this curve is shown in Figure 3(b). Here co is a

monotonic function of wavenumber tending to infinity as k is
increased and to a finite limit, _ 1.46 as k_0. For k =1 the

frequency is _ = 2.50, and so the period of the wave is given by T=

2rr/l_' I = 2.5l.

A contour plot of one wavelength of the eigenfunction with k = 1 is

shown in Figure 4(a, c). The toroidal field is generated by the shear in

the region z < 0.5 and diffuses to the region of c_-effect (z > 0) where the
poloidal field is regenerated. For this reason the bulk of the toroidal



PROPERTIES OF NONLINEAR DYNAMO WAVES 301

1

0.5

0

-o.5

a) b)

';;;;--,,t',
:,',,,;',;-,",',',,

I.'///I _ I.,

-1
o 2 4 6

x

c)

I/I/Ill',,........' /////f
°s _",,_J))llll......._,, ,,,,',///\/

_,_YJJ] ,,..... ".'4,;11\_

-0.5

-1
0 2 4 6

2?

1

0.5

-0.5

-1

1

0.5

-0.5

-1

100 200 300

d)

2 4

FIGURE 4 (a) One wavelength of the eigenfunction for the toroidal field (B) in the

linear problem, with parameters chosen as in Figure 2. (b) Graph of (B2t versus z, which

clearly shows the z-dependence of the linear eigen function. The toroidal field is generated

by the ._-effect from the c_-effect and is strongest in, and just below, the region of overlap
of the ct-effect and .:-effect. (c) As (a) but showing contours of the vector potential A. (d)

As (b) but for (d 2) versus z. The graph shows that (A:)/(B 2) is small (although only the

relative size of the fields is determined by the linear theory).

field is generated and stored in (and just below) the region of overlap

of ,:-effect and shear. Similarly the poloidal field generated by the

c_-effect from the toroidal field lies in z>0, in (and just above)

the overlap region as in Figure 4(b, d) where the z-dependence of the

eigen functions is shown. These results are consistent with those found

by Parker (1993) for his linear model.

The calculations were then repeated for values of the parameters

that change the shape of the profiles for the c_-effect, shear and

diffusivity, given in equations (8)-(10). These results are summarised

in Table I. As expected, the larger the region of overlap of the shear

and c_-effect the more efficient the dynamo; therefore the critical

dynamo number is smaller for profiles that have large regions of

overlap. It is also apparent that the preferred wavenumber does not

vary significantly when the parameters are changed. All the calcula-

tions undertaken have k = 1 as the preferred integer wavenumber. This
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TABLE I This table shows the minimum critical dynamo numbers, D_, and the
corresponding wavenumbers, k*, for various parameter choices for the linear problem

defined in ( 11 ) and (13). Also shown are the values of the critical dynamo numbers and
frequencies for k-I. These will be the critical dynamo numbers in the nonlinear

problem. It is clear, that although changing the profiles has a qualitative effect on these
values, the critical wavenumbers and frequencies are all similar. The critical values for

E 10, _-, - 0.5 are shown in bold type. These are the parameters that will be used in the

nonlinear theory

Eff_'ct (_/' Changing _, _ and 71profiles

E z2 D_ k* Datk=l watk=l

1 0.5 9.59 0.58 12.0 1.07

10 0.5 40.24 0.78 42.0 2.50

20 0.5 55.19 0.83 56.7 3.02

50 0.5 67.33 0.87 69. I 3.65

1 0 12.97 (I.58 16.3 1.03
10 0 110.0 0.75 116.9 1.41

would seem to indicate that the chosen scale for the eigenfunction

arises not from any lengthscale that may be introduced by the profiles

(i.e., the length of the overlap region or a typical length for the switch-

off of the c_-effect), but from the nature of the Parker model and the
radial extent of the domain.

The frequency is a measure of the efficiency of dynamo action. In

the linear regime a more effective measure of the efficiency is the

growth-rate of the solutions (and consequently the critical dynamo

number), but in the nonlinear regime where solutions grow until

equilibration a useful measure of efficiency is how quickly the dynamo

can generate field of the opposite sign (i.e., how quickly the field can

reverse) and this is given by the frequency of oscillation. As noted by

Parker (1993), a dynamo with regions of o-effect and shear separated

in space is less efficient than one where the poloidal and toroidal fields

are generated in the same location, because of the time taken for

the toroidal field produced by the shear to diffuse to the region where

the poloidal field is generated (and vice-versa). Larger separation of

the two regions implies less efficient dynamo action, and it should

therefore also be the case that the dynamo is made less efficient if the

diffusivity between the two regions is reduced - the magnetic field

then takes longer to diffuse between them. This explains the changes in

the frequency shown in Table I - the frequency is higher (indicating a
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moreefficientdynamo)forprofilesthathavealargerregionofoverlap
andalargerturbulentdiffusivityin thatregion.Thisexplanationwill
beusefulinanalysingthenonlinearresultswhentheback-reactionof
the magneticfield on the profiles(and hencethe frequency)is
considered.

Theeffectsof changingthe boundaryconditionsof the linear
problemandintroducinganisotropiesintotheturbulentdiffusionon
thenatureof thesolutionsarenowinvestigated.Solutionsarefound
forthesameequationswithmodifiedboundaryconditionsonA at the

top of the box, so that (11) is now solved subject to the boundary

conditions

bR = bl = aR = ai z 0,

bR = bl = aR = a/= 0,

Z z --1_

(14)
z = +1.

The parameter values defining the profiles for the shear, c_-effect and

turbulent diffusivity were chosen to be the same as in the first

calculation. It is found that there are no qualitative differences in the

curves of marginal stability-the only differences are quantitative. For

this calculation D_ - 74.05 and this occurs at k = k* - 1.09. Clearly

k= 1 will again be the preferred mode in the nonlinear calculation.

(The slight increase in the size of the critical dynamo number can be

attributed to the fact that the A = 0 boundary condition at z = 1 makes

poloidal fields harder to excite near the boundary.) Also the frequency
is as before a monotonic function of wavenumber.

4.3. Summary of Linear Results

The dependence of critical dynamo numbers and wavespeed on

wavenumber has been calculated for a variety of parameter values and

boundary conditions. The results clearly show that the preferred

lengthscale is not determined by the precise choice of parameters in the

model and that other properties of the solution are robust and are not

sensitive to the choice of either profile or boundary conditions. Rather

they are determined by the general characteristics of the model (large

turbulent diffusivity, shear and _-effect largely separated). Therefore,

these properties should also apply in the nonlinear regime and indeed

in more elaborate systems based on the same model.
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5. QUENCHING MECHANISMS

In this section the consequences of including simple quenching

mechanisms in the model are investigated and a systematic survey of

these types of nonlinearities is undertaken. The most usual quenching

mechanism employed in dynamo models is a-quenching where the

magnetic field acts back on the small-scale helical motions. It has been

argued (e.g., Vainshtein and Cattaneo 1992; Cattaneo and Hughes

1996) that this effect can lead to suppression of the growth of magnetic

field at levels much lower than equipartition. In this section no

assumptions are made a priori about the strength of this effect- rather

it is considered to be a parameter of the model. Similarly .:-quenching

and q-quenching (representing modification of the angular momen-

tum profile and turbulent diffusion by the magnetic field) are
considered.

5.1. Non-Local Quenching

The simplest extension of the model to the non-linear regime is to

consider simple quenching mechanisms acting in isolation. In the past

these have been the preferred non-linearities in many dynamo models,

and so the results should act as a benchmark for the more complicated
non-linearities considered later. Here the Malkus-Proctor effect is

ignored by setting T = 0 in (6c). Now (6c) decouples and (6a, 6b) may
be solved in isolation with v set to be zero.

The most basic forms of quenching to consider are those where the

a-effect, ":-effect and turbulent diffusion are quenched inversely with

the average magnetic energy of the wave. That is we set

1 1 1
O_ 0K Qu (15)

I+_B 2' I+_B 2' I+#B 2'

where again an overbar indicates a horizontal average. As discussed

extensively in Tobias (1996b), the nature of the solution inherent in the

choice of periodic boundary conditions makes this form of quenching

a natural approximation. Local (in both x and z) quenching

mechanisms will give qualitatively similar results as discussed in

Section (5.2).
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Now the a and a_ effects and turbulent diffusion are not only

functions of position but are also modified by the average toroidal

field B 2. Nonlinear travelling wave solutions of the form

m

B = Zb_(z)sinj(x- ct) + b_(z)cosj(x - ct),
j= I

m

A -- _ 4(z)sinj(x- ct) + a_(z)cosj(x - ct),
j=l

(16)

can be found using a continuation method. Here c is the speed of

propagation of the wave in the x-direction and the wavenumber is set

to unity. The Galerkin expansion is now substituted into (6a, 6b) to

yield the system comprising the 4m coupled nonlinear ordinary

differential equations for the coefficients; i.e., for j= 1, m

h[b_'C(z) - j2b_(z)] + _jb_(z) + Dg.jc_(z) + h'tff (z) = O,

h[bi__(z) - j2b;(z)] - cjb;(z) - Dgja_(z) + h'b'Q(z) = O,

h[ayC(z) -j2aj'(z)] + cja_(z) + fb_'(z) = O,

h[a_Y_(z)-j2q(z)] - cja_(z) +fb_(z) = o,

(17)

where ' denotes differentiation with respect to z. At this point it is

important to recall that h, g, and fare all functions of both z and B 2

and hence there is coupling between all the modes. This is apparent

when it is noted that Parseval's Theorem implies

m d_
-Z-(z)

j=l

m

S _ /S2 Z[b'j(z)b}C(z) + b_.(_)b_ (z)l,
j=l

(18)

and so all the modes in the sum appear in every equation in (17).

Equation (17) defines a new two-point boundary value problem,

with the same boundary conditions as those initially considered in the

linear theory (solutions are implicitly periodic at x = 0, 270. In this way

both stable and unstable branches of travelling wave solutions to the

problem may be located.
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Thestabilityof thesesolutionbranchesis thendeterminedby
timesteppingtheequationsusinga pseudo-spectraldiscretisationin
spacetogetherwithanAdams-Bashforthtimesteppingscheme.The
timesteppingroutineitselfwill onlyfindstablesolutionbranchesbut
willalsoallowsolutionsotherthantravellingwavesto befound.

The nonlinearequationsintroducethreenewparametersto the
problem.These are c_, n, and/_ that represent the efficiency of the c_-,

,_,- and _/- quenching in the model respectively. The increase in the

number of parameters in the problem means that an extensive search

through parameter space is not feasible. However, the linear theory

discussed earlier indicated that the results would not be too sensitive to

particular selections in parameters that modify the profiles for the

shear+ c_-effect and diffusivity. It therefore seems more sensible to

explore the effect of the quenching parameters in the nonlinear regime,

and to keep the 'profile parameters' fixed at E= 10, z2=0 (so the

profiles are as in Fig. 2). The boundary conditions are also held fixed.

5.1.1. _- and m-quenching

The simplest extension to the nonlinear regime for the travelling wave

solutions is to introduce _-quenching as an equilibration mechanism

for the field (i.e., set a= I without loss of generality # =_ = 0). The

branch of travelling waves is followed from the initial Hopf

bifurcation at D = -42.0, as the magnitude of the order parameter D

is increased. The branch is shown in Figure 5 where the generated

magnetic field is a monotonically increasing function of the dynamo
number D; this is a feature of all the nonlinear solutions found in this

section. The travelling waves remain stable for all the values of D

investigated, which is also a result that holds for all further choices of

parameters. The lack of subsequent bifurcations to more complicated

time-dependent behaviour means that the effects of varying the

parameters (and hence the nonlinearities) on the spatial structure and

the wavespeed can be investigated with relative ease in this system.

Clearly a different type of nonlinearity (other than simple quenching)

is needed to produce more complicated time-dependence in this

system.

In Figure 5(b) the wavespeed c is plotted as a function of dynamo

number. It can be seen that the wavespeed decreases slightly as -D
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FIGURE 5 a-quenching nonlinear solution: (a) Average magnetic energy (B 2) at

z = 0 versus dynamo number, D for the case cr - 1, _ -/_ = 0. (b) Wavespeed c versus

dynamo number with parameters as in (a). The wavespeed stays nearly constant

(although a slight drop is noticeable).

increases, so the waves slow down as ]DI is increased; at first sight this
seems a strange result. The quenching mechanism acts so as to reduce

the effective value of the dynamo number until Den'"_ D,..The

wavespeed should therefore remain approximately constant (as noted

in Noyes et al., 1984). The slight decrease in wavespeed is due to the

modification of the profile for the ¢_-effect by the local action of the

magnetic field, and can be understood in the context of the results of
the linear theory discussed earlier. Figure 6 shows how the growth of

magnetic energy in the area of overlap of the regions of cx-effect and

shear quenches the a-effect in that region. The c_-effect is now confined

to a thin region near the top of the layer, and there is no longer a large

region of overlap. Hence the dynamo is less efficient (as discussed

earlier) and the wavespeed is less than that for the critical value of the

dynamo number. The nonlinear toroidal and poloidal fields have a

similar spatial dependence as the eigenfunction of the linear problem,
as shown in Figure (6a). This indicates that the quenching acts simply
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FIGURE 6 Nonlinear solutions (&-quenching) - z-dependence: (a) Graph of (B 2)

(horizontal) versus z (vertical) for D = -1164, other parameters as in Figure 5. The

toroidal field is concentrated at and just below z = 0 as in the linear eigenfunction. (b)

Graph of c_-effect (horizontal) versus z (vertical). The c_-effect has been quenched to zero

by the magnetic field throughout the bulk of the region, only reaching its unquenched
level at z = 1 where the toroidal field is set to 0.

as an equilibration mechanism for the field, and does not change the

spatial dependence of the solutions.

The case where _ = 1 and ,u = a = 0 is now considered, so that only o:-

quenching is operating. Figure 7 shows that again the magnetic energy

at z = 0 is a monotonic function of D and the travelling wave solutions

remain stable. Moreover the wavespread of solutions does not vary

significantly as D is increased. In this case only a slight increase in

wavespeed is observed for large dynamo numbers. The dynamo is

therefore slightly more efficient for larger forcing. The solution for

la.rge dynamo numbers has a similar z-dependence to the eigenfunction

of the linear theory, as in the case where s-quenching is considered in
isolation.

5.1.2. _l-quenching

So far the nonlinear quenching has acted solely as an equilibration

mechanism but it is now necessary to include the effect of the Loi'entz

force on the diffusion properties of the turbulence. Now we set # = 1,

so that r/-quenching is in operation, (c_-quenching also remains in

operation as a= 1) and it is expected that the z-dependence of the

solutions will change as the turbulent diffusion is modified by the

action of the magnetic field.
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FIGURE 7 _,-quenching nonlinear solutions: (a) As for Figure 5(a), but parameters

are now n- 1, cr-tz- 0. (b) As for Figure 5(b), but parameters are as in (a). Again the

wavespeed c is largely unaffected (_25% change), although a slight increase in c may be
detected.

In Figure 8(a) the dependence of the magnetic energy on dynamo

number is displayed and when this is compared with Figure 5(a) it is

clear that the toroidal field strength (and hence magnetic energy) that

may be created is significantly larger for the case when q-quenching is

included. This effect can be explained using either mathematical or

physical arguments. It is necessary to understand how the reduction of

the local value of the turbulent diffusivity can lead to an increase in the

strength of the magnetic field that may be generated by dynamo

action. The mathematical argument is simply that the reduction of

diffusion locally by q-quenching leads to an increase in the value of the

effective local dynamo number Dioc. This follows immediately from
the definition

Dioc -- D g(z' =)/(z, =), (19)
h-(_,B")
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FIGURE 8 q-quenching (together with a and u-quenching): (a) As for Figure 5(a), but

for parameter values v-_=#= 1. The magnetic energy is much larger for a given

dynamo number than for the case with just a and u-quenching. (b) As for Figure 5(b),
but with parameters in (a). THe wavespeed is reduced to nearly zero as the dynamo

number is increased. This is a new effect introduced by the r_-quenching.

and assuming that c_- and ,_-quenching are kept at the same level. An

increase in Dio_ means that the local generation of field is more efficient

for a given global dynamo number and this leads naturally to stronger

fields. Physically, local dissipation via the turbulent convection is

reduced by the action of the Lorentz force and this leads to the build

up of magnetic energy locally and to significantly larger field strengths.

At first there may appear to be a contradiction here, reducing

dissipation leads to the build-up of stronger fields yet earlier it was

argued that magnetic dissipation is vital to the Parker dynamo. How

may the two be reconciled? The answer is that as the turbulent

diffusion is quenched the form of the solution changes (see below) so

that the regions of poloidal and toroidal field overlap. Diffusion is now

not so essential to the operation of the dynamo as in the linear model

because both the toroidal and poloidal fields are in the same location.

The most striking effect of introducing _?-quenching can be seen in

Figure 8(b) where the wavespeed is plotted as a function of dynamo
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number.In contrastto thecaseswhereonlyc_- and a_-quenching were

considered the wavespeed does depend significantly on the dynamo

number. The wavespeed is a monotonically decreasing function of

dynamo number, showing a sharp drop initially and appearing to tend

to zero as D---,oc. This drastic reduction in wavespeed is due to the fact

that the turbulent diffusivity has been almost completely quenched by

the magnetic field and molecular diffusion is the only mechanism for

the transport of magnetic flux. This makes the dynamo significantly

less efficient as diffusion of poloidal field from the convection zone to

the overshoot region and of toroidal field in the opposite direction are

both suppressed. As the dynamo is less efficient the wavespeed c is

decreased and the cycle period is increased for higher dynamo

numbers. This result raises the question of how much the diffusivity

may be quenched in astrophysical bodies-if the quenching is too

strong the dynamo may cease to be efficient.

Another indication that the quenching is no longer acting simply as

an equilibration mechanism comes from the spatial dependence of the

solution as shown in Figure 9. The z-dependence of the r/-quenched

solution (particularly of the toroidal field) is very different from the

eigensolution. This is because there is no longer a sharp change in

the diffusivity in the region where the magnetic field is generated, so

the rapid change in preferred lengthscales that occurs at z= 0 in the

linear theory (and in the nonlinear c_- and a_-quenching models) is no

longer present. As a result the field is no longer confined near to z = 0

and can penetrate further in to the region z < 0, where the shear is

strongest and so toroidal field may be easily produced. The slanted

appearance of the toroidal field is due to the action of the shear and

the time taken for the toroidal field produced by the shear to diffuse

upwards into the region z > 0. All these results demonstrate that the 77-

quenching mechanism has a very different effect on the nature of the

solutions from the other types of quenching. It changes the form of the

solutions and has a drastic effect on the wavespeed.

5.2. Local Quenching

The form of the (averaged) quenching selected in (15) is a simpli-

fication consistent with the hypothesis that the solutions are local and

therefore represent the magnetic behaviour at a fixed latitude. The
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simplification to a one-dimensional (z-dependent) form for the

quenching enabled the nonlinear solutions to be followed using a

continuation method and the radial dependence to be studied in

detail. However it is important to check that the main conclusions

remain valid if the form of the quenching is changes to a 'local' (fully

two-dimensional) form. Hence the calculations are repeated for the

case where the quenching is local and the definitions in (15) are

replaced by

1 1 1

Q_ 1+ oB2(x, z) ' QK 1 + _B2(x, z) ' Ql, a + ItB2(x, z)"

(2o)

The equation for the velocity perturbations is again decoupled by

setting T = 0. The equations are now fully two-dimensional and are

therefore too complicated to solve using a continuation method.

Stable solutions are found using the time-stepping code described
earlier.
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The results of the integrations show that the solutions behave in an

analogous manner to those for the case with averaged quenching. For

example for simple local c_-quenching only, we set _r- 1, _ = # = 0. For

this choice of parameter values the travelling waves remain stable as D

is increased into the highly nonlinear regime. As in the case where the

quenching is proportional to the average magnetic energy of the wave,

the magnetic field strength is a monotonic function of dynamo number

and the speed of travel of the waves varies only marginally. For all

other calculations where the velocity equation is decoupled and local

quenching mechanisms are the sole nonlinearity, travelling waves

remained stable. Hence the introduction of local dependence to the

quenching models has very little effect on the nature of the solutions.

As in the case of global quenching the temporal behaviour of solutions

remains uncomplicated.

Quenching mechanisms are particularly simplified parametrisations

of the effect of the Lorentz force, being local in space and

instantaneous in time. This inherent simplicity means that the form
of the solutions is not sensitive to the exact choice of the nature of the

mechanism i.e. whether the mechanism is averaged (one-dimen-

sional) or local (two-dimensional). In Section 6 it will be demonstrated

that this is not the case for the more-complicated (and realistic)

Malkus-Proctor nonlinearity, where the particular form of the

interaction can have large consequences for the nature of the solutions.

5.3. Summary of Quenching Results

In the above sections a thorough investigation of the nonlinear

behaviour of the travelling waves has been conducted. The important

results are summarised below. The travelling waves remain stable for

all choices of parameters and all values of the dynamo number

investigated. This indicates that the quenching mechanisms (whether

local or averaged) considered do not naturally lead to modulation of

the waves. It may be that a more realistic formulation of the problem

where the Lorentz force is allowed to act back directly on the velocity

will lead to more complicated time-dependence and this is investigated

in Section 6.

c_- and x-quenching have similar properties. Both act purely as

equilibration mechanisms. They have little effect on the spatial
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structure of the solutions. Also the speed of the travelling waves

remains roughly constant as the dynamo number is increased.

However, the introduction of r/-quenching changes both the spatial

structure of the waves and also the wavespeed. The wavespeed is

reduced as the dynamo number (and hence magnetic energy of

solutions) is increased. The dynamo becomes less efficient as the

turbulent diffusion is reduced by the strong fields. The initial Hopf

bifurcation to travelling waves may be subcritical if the _-quenching is

allowed to be significantly stronger than the a;-quenching.

6. THE MALKUS-PROCOTOR NONLINEARITY-ROUTES

TO CHAOS

In this section I will demonstrate that it is only by considering a

sufficiently realistic (and therefore complicated) nonlinearity that a

model can be constructed that exhibits transitions to complicated

temporal behaviour. It is therefore vital to include the rSle of the

Lorentz force in generating velocity perturbation via the Malkus-

Proctor effect. These results will prove to be the most interesting and

important when describing the modulation of the basic solar cycle.

We therefore consider the fully-coupled nonlinear system given by

(6). The boundary conditions that are imposed on the magnetically

driven velocity v must be consistent with the (implied) conditions

satisfied by the shear g. In this case, it is logical to choose periodic

boundary conditions in the x-direction and

v(x,-1)=O, _zz(X, 1):0 (21)

as the conditions on the top and bottom of the box.

6.1. Global (Averaged) Interaction

6.1.1. Derivation of Equations

The travelling wave models discussed so far are local models in the

sense that they contain no latitudinal dependence of the parameters. In
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this case it is also reasonable to adopt nonlinearities that are averaged

over the period of a wave in the x-direction, as the primary interest is

in the radial (z) dependence of solutions and their temporal behaviour.

Calculations that include local quenching mechanisms have been

considered, and local interaction via the Malkus-Proctor effect will be

considered later in this section. For now, the c_-effect, shear and

turbulent diffusion remain quenched with the average magnetic field

energy so that f(z, B2), g(z, 8 2) and h(z, B2) remain as defined in

(8)-(10). If the quenching is averaged in the latitudinal direction then

for consistency the perturbation to the velocity should only arise due

to the Lorentz Force averaged over the period of the travelling wave in

the x-direction. In this case (6) becomes

OA h ro2A o2A]
O--t= [-_x 2 + Oz2 J + f B,

O--_=h +_5-z2 j +_-z+D (z)+ Ox'

0t -- [_5x2 z2 J + VOzz_ + sign (D) Ox

(22)

OA OB 1Oz _ "

where an overbar indicates a horizontal average over the period of a

wave in the x-direction. These equations with the averaged effects of

the Lorentz Force form a starting point for this investigation.

Travelling wave solutions can be found by expanding the poloidal

and toroidal fields in a Fourier expansion moving with the wavespeed

as in (16). In a similar way ordinary differential equations for the

coefficients a_, a_, b] and b_ can be derived, though this time they are
coupled to an equation for 9(z). The equations become

/ ,4_\

+ + + + O,

d_\ ch[by_(z) -j2b;(z)] - cjb)'(z) - D g + -_z)ja)(z) + heb;_ = O,

h[ayC(z) - j2a; (z)] + cja](z) + fb; (z) = O,

h[ay_(z) -j2_(z)]- cja;(z) + fb;(z) = O,

(23)
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forj = 1, m , together with

d2v ,, d_ . 1 wL, .r,, _, , ,
- -b_a,+bjaj]=O. (24)7-h_+rn t_z+S,gn (D)52..j't0ia; b,a; " ' " '-'

- j= 1

These equations (23)-(24), together with the appropriate boundary

conditions on the toroidal and poloidal field defined in (12) and

d_

_(-1) =_zz(l) = O, (25)

constitute a two point boundary value problem. The stability of these

travelling wave solutions may be determined using the pseudospectral/

finite difference timestepping scheme described earlier. Indeed, as

bifurcations to more elaborate time-dependent behaviour are ex-

pected, this timestepping scheme will be useful in locating stable

quasiperiodic and chaotic solutions. Here the properties of these

travelling waves are investigated in the expectation that they will lead

to some understanding of the Malkus-Proctor effect that may prove

useful in analyzing the full problem.

6.1.2. Properties of Travelling Waves: Wavespeed and Shear Profiles

Rather surprisingly (and perhaps disappointingly), the travelling

waves remain stable for all the combinations of parameter values

selected. To obtain the required modulation therefore, one must

consider the full problem, with local interaction of the magnetic and

the velocity fields, defined by (6) (as in Section 6.2). The travelling

waves do however show different behaviour than those found for

simple quenching mechanisms. Initially the Malkus-Proctor effect is

set to be the only nonlinearity in the problem and n, _ and l_ are all set

to be zero and the magnetic Prandtl number _- is set to be unity. All

other parameters relating to the shape of the profiles for the c_-effect,

shear and turbulent viscosity are set to be the same as in Figure 2.

Here (as before) negative dynamo numbers are studied. Figure 10

demonstrates that both the magnetic energy and wavespeed are

increasing functions of the magnitude of the dynamo number.

The wavespeed increases by a significant amount. The z-dependence
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FIGURE 10 Malkus-Proctor only nonlinear solutions: (a) Average magnetic energy

(B 2} at z = 0 versus dynamo number, D for the a _ - t_ 0, _- - 1. (b) Wavespeed c
versus dynamo number with parameters as in (a). The wavespeed increases as the

magnitude of the D is increased.

of the toroidal field in the nonlinear regime is similar to that for the

eigenfunction with the only change being that the Lorentz Force

generates a shear lower down (i.e. at smaller values of z) than the

region where the magnetic energy is concentrated. This shows one

important difference between quenching mechanisms and the Malkus-

Proctor effect-whilst quenching mechanisms may only act where the

field is strong, the Lorentz force may drive shears in places with

weak(er) fields. This is because the Lorentz Force term in the velocity

equation depends on gradients of the field (and not soley on the

absolute magnitude). If the other nonlinear effects are kept at zero,

then changing the value of _- in the averaged velocity equation has no

effect on the nature of the solutions. Indeed it may be removed from

the equations by rescaling the magnetic field. Hence if or=6: = # = 0

then r = 1 without loss of generality.
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HavingunderstoodthecasewiththeMalkus-Proctoreffectonly,we
nowwishto includethequenchingmechanismsto seewhateffect(if
any)theymayhave.A largenumberof combinationsof parameter
valuesareavailableto us,andhereonlya smallsubsetispresented.
Thefirst quenchingmechanismto beaddedis c_-quenching The

magnetic energy is less if both nonlinearities are included together than

if the nonlinearities are considered in isolation (unsurprisingly). The

dependence of the wavespeed is slightly more complicated; initially if

both mechanisms are included the wavespeed is higher as the Malkus-

Proctor mechanism tends to increase the wavespeed. However if D is

increased further the speed drops below that of the case where the (_-

quenching is acting in isolation which demonstrates that the two

mechanisms must interact in a more complicated manner than simply

adding the two effects together.

If aJ-quenching and _/-quenching are added the story is much the

same - the magnetic energy is less if the Malkus-Proctor effect is

included. For the wavespeed, the 7/-quenching is again the dominant

nonlinearity, slowing the wave down for the reasons discussed in

earlier sections the Malkus-Proctor effect does have some effect in

counteracting this behaviour, but it is clear that the efficiency of the

dynamo is diminished by the suppression of the turbulent diffusion.

6.2. Local Interactions

The global interaction described in the previous secion failed to lead to

the complicated time-dependence anticipated. For this reason we

return to the full problem where the interactions of magnetic fields

with velocity fields are local, and no averaging takes place. If the

Lorentz force drives a large-scale velocity locally then for self-

consistency the quenching mechanisms that parametrise the effects of

the Lorentz Force on the small-scale turbulence should also depend on

the local values of the magnetic fields strength. Hence the definitions of

f, g and h representing the <_-effect, shear and turbulent diffusion are as

in the local models described in equation (20).

The local quenching makes it very difficult to use continuation

methods on the problem as the problem is now fully two-dimensional.

For this reason the timestepping routine is used to find stable solutions

for this problem.
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6.2.1. Maikus-Proctor Effect Alone

As in the last section, the quenching mechanisms are initially switched

off by setting a = _ = # = 0 and the Prandtl number _-is set to be unity.

For ]D] <Dcrit=42 both the magnetic field and velocity field decay

away as predicted by linear theory but as the dynamo number is

increased past this value dynamo action sets in at a supercritical Hopf

bifurcation to travelling waves. For D just greater than this critical

value stable travelling waves are found the solution is periodic, but

is constant in a frame of reference travelling with the wavespeed.

Analysis of the solutions is easier if this basic oscillation associated

with the speed of travel of the wave is removed, which can be

accomplished by examining some global properties of the solutions.

The average magnetic energy E8 and the energy kinetic energy of the

magnetically driven velocity field EK are calculated, where

EB = _ B_dxdz, El( = _ v2dxdz (26)
.1 V

where V is the domain of integration (0 < x < 27r,- 1 < z < 1).

For travelling wave solutions we except EB _ const, and EK _ const.

and the trajectory to tend to a fixed point in the (EB, EK) phase plane.

For a weakly nonlinear solution both EB and EK are reasonably small.

The solutions for the toroidal and poloidal field are shown in

Figure 11 - these are very similar to the eigenfunctions, which is not

surprising as the induced velocity v is very small and so will have only

a weak effect on magnetic field generation. The figure shows the wave

travelling along the interface from left to right; nearly a complete cycle

of the wave, which has a period T,-_ 2.5, is displayed. The wavespeed

can therefore be calculated as c_2.5 (1 d.p.) which is consistent with

the linear theory.

The magnetically-driven velocity perturbations are displayed in

Figure 12. As the velocity is driven by the quadratic Lorentz force its

x-dependence is different to that of the magnetic fields. In this case it is

clear that B_Bo sin (x-ct) and so it is natural that the velocity

v_v0+ v2sin 2(x-ct). It is the resultant shear that is important in

equilibrating the dynamo, and it can be inferred that this is

concentrated at small values of z. (The presence of this shear can be
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FIGLTRE 11 Magnetic Field Travelling Waves. The ligure shows the form of the

solutions for A (top) and B (bottom] as time progresses tbr D- 50. The scqucncc

should bc viewed l'rom left to right and lop to bonom. Each snapshol is separated by a

time t :: I).4992. Strong positive lields are shown in red whilst strong negative tields are in
hhlc. (Scc ('olor Plate I).

detected by the rapid change of colours from blue to red to green near

z- 0.75.) In this respect this model is similar to the averaged model

considered in the previous section as the driven shear appears at small

values of z away From the region of maximum magentic field. This

shows once again that the Malkus-Proctor effect is non-local and

therefore is more sophisticated than simple quenching mechanisms.
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FIGURE 12 Vclocily Pcrlurbalions Travelling Waves. "1"tlc ligure shm_s lhc form of

tile solutions for r as time progresses for I) 50, The _clocity perturbations oscillate

with half lhc period of the in4gnctic lield. The snapshots correspond to those in

Figure 1 I. The prcscllc¢ of ;.I radial shear near : 0.75 C{ll] b_2 inferred from thc rapid

colour change. {See Color Plale II).

The velocity perturbations migrate in the same direction as the

magnetic tield with the same wavespeed, bui becatise of the .v-

dependence of the perturbations, the period of the travelling waves is

hall" that of the magnetic fields: i.e. B +_e'_'_ => me 2_'t

If ]D I is increased further, the travelling waves grow in amplitude

until they become unstable in a secondary Hopf bifurcation to

modulated waves. For these modulated waves both the magnetic

energy EB and the kinetic energy E#, oscillate about a mean value as

shown in Figure 13 with the period of oscillation being 0.46. Hence for

these parameter vahles, trajectories in energy space tend to a limit

cycle as shown in Figure 13(c). This limit cycle corresponds to a two-

torns when the basic oscillation due to the travelling waves is

reintroduced.

The modulation is apparent m Figure 14 where the structure of the

solution is now very different to that of the eigenfunction. After the

secondary Hopf bifurcation the solutions not only travel but 'breathe"

as they move along the interface. As well as this change in the
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FIGURE 13 Modulated waves periodic energies. (a) Magnetic Energy Et_ for D =

150. (b) Kinetic Energy E, for D= -150.

temporal behaviour of the solutions, the spatial dependence has clearly

altered dramatically. The velocity field produced by the large-scale

Lorentz force near z--1 is now strong enough to generate some

toroidal field. Two properties of this induced field are immediately

apparent from Figure 14. The first is that this field varies on a smaller

scale than the field in z > 0.5 in this layer B_ sin 2x. This can be

attributed to the fact that this field is generated by the velocity

perturbation and not the imposed shear and that it is entirely

contained in a region where the diffusion is small and so the natural

lengthscale is also smaller. The second property concerns the speed of

propagation of the waves. The magnetic field in this layer travels very

slowly to the right - a fact that can be seen by comparing the position

of the strong field in the first and last frame in Figure 14. The speed of

propagation of this field can be estimated to be c+27r/27 =0.23. The

dynamo waves travel more slowly in this region because the diffusivity
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FIGURE 14 Magnetic Field Modulated Waves. As for Figure 11, but D -150.
The velocity field has acted back producing toroidal field at small values of z. This
magnetic field has a smaller scale as it is produced by the velocity perturbations (which
have a characteristic length-scale halt" that of the main field) in a region with a smaller
value of the diffusivity. It travels slowly to tile right for the same reason. (See Color Plate
Ill).

is small in this layer and the dynamo is therefore less efficient and

hence slower. The magnetic field that is generated by the imposed

shear for larger values ofz continues to travel relatively quickly and is

largely unaffected by the magnetic field in the layer of reduced

diffusivity. There is some interaction however, when a fast-moving
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region of strong positive field passes over a slow-moving region of

positive field (as in the first snapshot on the left-hand side) these fields

merge together and the radial (and latitudinal) gradients in the field

will bc small in the region. However, when strong positive field passes

over strong negative field (as in the last snapshot on the right) large

gradients in field are created. These are important in generating the

velocity perturbations via the Malkus-Proctor effect.

The velocity perturbations corresponding to this magnetic field are

shown in Figure 15. The snapshots show that the velocity at the top of

the domain resembles that for the travelling wave case. At the bottom,

however, the velocity has quite a different form: four nodes, which

oscilhtte and travel slowly to the right, appear in this layer of reduced

diffusion. The size and stregth of these nodes at any given time can be

understood in terms of the relative positions of the fast-moving and

slow-moving magnetic field. I1\ as explained earlier, the proximity of

strong negative toroidal field and strong positive field leads to large

gradients in the field, then these gradients are responsible for the

generation of velocity perturbations.

FIGURE 15 Velocity Perturbations Modulated Waves. The figure shows the form
of the solutions for v as time progresses tbr D 150. Velocity perturbations are drived

by gradients in the magnetic lield. (See Color Platc IV).
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However this effect is not instantaneous the velocity takes some
time to respond to the magnetic field, and so there is a time-lag

between the magnetic field and the generation of shear, it is well
known from the work of Yoshimura (1975) that the introduction of a

time-lag to the nonlinearities in the dynamo equations can lead easily

to complicated time-dependence. The Malkus-Proctor effect, by
including the equation for the large-scale velocity, introduces this

time-lag in an entirely natural way. This is in contrast to the simple
quenching mechanisms discussed previously, where the small-scale

turbulent velocity field has an instantaneous response to the magnetic
field which is local in space.

If the dynamo number is further increased, the modulated waves

persist, with an increase in amplitude and frequency. However for

D = -330 the nature of the solutions is different as shown in Figure 16

where the basic oscillation in the magnetic and kinetic energy is itself

modulated on a longer timescale. This indicates that the solution has

undergone a tertiary Hopf bifurcation where a third frequency of

al
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FIGURE 16 Quasiperiodic waves (a) As for Figure 13 (a), bul D= 330. (b) As for
Figure 13 (b), but D= 330. The energies are now quasiperiodic.
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oscillation has been introduced to the problem. Motion now lies on a

two-torus in energy-space (corresponding to a three-torus in the

extended system where the basic wavespeed is included). The spatial-

dependence for this type of solution is very similar to that for the

modulated wave described earlier.

As D is increased further this torus breaks down and the solutions

become chaotic as shown in Figure 17. The "ghost' of a torus still

remains for this parameter value (D = 400) as shown in Figure 17(c).

In this case however the nature of the spatial dependence of solutions

is somewhat different as shown in Figure 18. The solution is still

characterised by two layers of interacting dynamo waves travelling at

different speeds. The horizontal scale tbr the variation of the field is

similar in both layers and the two layers interact substantially. This

implies that the velocity perturbations are now as important as the

imposed shear at the top of the box. If D is increased further, chaotic

solutions of ever-increasing complexity are found until problems with

numerical accuracy prevent more interations at D- 550.

This sequence of calculations includes a variety of behaviour and

therefore raises a nunaber of questions about the processes involved

here. The first question involves the bifurcation sequence, which is

exactly that found in the low order model of Jones et al. (1985) and

similar to that for the third-order system examined in Tobias et al.

(1995). It is important to discover whether the bifurcations that the

system undergoes are simply the result of a special choice of model/

parameters or if the sequence is robust. The model exhibits both

interesting temporal and spatial behaviour. Arc the two linked? That

it, does the modulation follow simply from the interaction between the

two layers of dynamo waves travelling at different speeds, or is the

spatial behaviour a secondary effect of the modulation that simply

enhances the behaviour already present'?

6.2.2. Solutions for Constant q

The complicated two-layer structure for the toroidal field in the

previous model is due to the disparity in the value of the diffusivity at

the top and bottom of the domain. We may remove this structure by

considering solutions to a model with constant diffusivity (i.e., a

diffusion that is independent of both position and magnetic field
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FIGURE 17 Chaotic solutions (a) As for Figure 13 (a), bul [)= 400. (b) As or

Figure 13(b), but D _= 400. (c) Chaotic attractor. The energies arc now chaotic;tlly
modulaled.

strength). For this model, therefore t1(:) = 1, and all other variables

and parameters are as in the previous section.

Here dynamo action to travelling waves sets in at a supercritical

Hopf bifurcation trt D= 83. This value is greater than that for the

variable diffusivity model because the diffusion is now O(1) every-



328 S. M. TOBIAS

FIGURE 18 Magnetic Field Spatio-tcmporalChaos. As tbr Figure 1I, but D -400.
(SeeColor Plate V).

where and so the shear and c_-effect must be larger to overcome

dissipation. Again the travelling waves have constant magnetic and

kinetic energy. Snapshots displaying the spatial dependence of the

toroidal and poloidal field are shown in Figure 19, where it is apparent

that the z-dependence of the solutions is less complicated than in the

previous model. It is also interesting to note that the wavespeed of

these solutions is c_2.8, larger than for the marginally supercritical

solutions for the previous model so the O(1) diffusion throughout the

layer obviously increases the efficiency of the dynamo. This simple

z-dependent structure is also found for the velocity perturbations.
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FIGURE 19 Magnetic Field Travelling Waves. The figure shows the form of the

solutions for A {top) and B (bottom) for the case where _l is a constant D- -90. (See
Color Plate Vl).

Increasing ]D I again leads to a secondary Hopf bifurcation and

modulated waves where the magnetic and kinetic energy both

vacillate. The spatial structure of the modulated waves remains simple

as shown in Figure 20, with no hint of the conqplicated layer structure

and interaction between waves travelling at different speeds that

characterised the solutions for the model with variable diffusivity. The

modulation is clearly visible as the relative strengths of the positive

and negative fields oscillate as the wave propagates. This is

particularly clear in the snapshots of the poloidal field - in the first



330 S.M.TOBIAS

FIGURE20 MagneticField ModulatedWaves.(i/ constant) The tigure shows lhe
forn'_of the solutions for A (top) and B (boltt)m) as lime progresses for D = 400. (See
Color Plate VII).

and fifth snapshot negative field dominates, whilst in the third the

positive field is stronger.

Further increase in ]D I leads to subsequent tertiary Hopf bifurcation

to motion on a two-tours in 'energy-space" (shown in Fig. 21) which

breaks down to form the chaotic attractor. For these solutions the

spatial structure is complicated. The nodes are now irregular and

breathe erratically, as well as travelling quickly to the right. The

velocity field behaves in much the same way wild oscillations are

superimposed on a net propagation of the waves to the right. If the
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FIGURE 21 Two-torus and chaotic attractor (q constant): Plots of the trajectories in

the (EH, k',_-) phmc I'or (a) D I[)00. (bj l) 1500.

dynamo number is increased further these oscillations become larger in

amplitude.

This model therefore undergoes the same sequence of bifurcations

as the more realistic model discussed earlier. The travelling waves

become unstable in a series of Hopf bifurcations leading to motion on

a torus which breaks down, leaving a chaotic attractor. The

modulation is therefore a direct result of including the Malkus-

Proctor mechanism and the equation for the large-scale velocity

perturbations. Any complicated spatial behaviour is a secondary

effect, which is only present because of the bifurcations to modulated

waves. (If travelling waves remain stable then the spatial structure

stays simple, as in the local quenching models.) Whilst the spatial

dependence may enhance the temporal behaviour and encourage the

transition to spatio-temporal chaos, it is not an integral part of the

mechanism.
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6.2.3. Changing the Magnetic Prandtl Number

We now return to the initial Parker model with diffusivity varying

across the layer, as this model is more relevant to the generation of

fields at the base of the convection zone. The consequence of varying

the magnetic Prandtl number on the nature of solutions is investigated.

In the low-order model studied by Weiss et al. (1984) and Jones et al.

(1985), the bifurcation sequence was fairly sensitive to the choice of the

value of the magnetic Prandtl number with the periodic solution

remaining stable unless 7-< 1. Clearly if the same is true for the PDEs

investigated here, then this would have serious consequences for the

claim that the bifurcation sequence and route to chaos found here are

robust and therefore astrophysicaUy relevant.

For this reason, results are now reported for 7-=0.5 and 7-=2.

(Changing the magnetic Prandtl number by an order of magnitude

presents problems for the numerical scheme though this is addressed in

the next section.) The results for 7-= 0.5 are similar to those for 7-= 1.

The bifurcation sequence is the same and the only difference is in the

value of the dynamo number at which the bifurcations take place. The

bifurcations for this model occur earlier (at lower values of ]D[) than

for when 7-= 1. This is to be expected as the smaller the value of 7-, the

larger the effect of a given magnetic field strength on the velocity

perturbations. The time series for the magnetic energy for three types

of solution (travelling waves, modulated waves and quasiperiodic

waves) are shown in Figure 22.

Not only is the bifurcation structure the same for this parameter

value, but the spatial dependence of solutions is similar to that for

7-= 1 - the two-layer structure of the toroidal field remains, and the

four nodes of magnetic field persist in the lower layer. The spatial

dependence is therefore the same as that shown in Figure 14.

For 7-= 2 a similar bifurcation sequence is again observed. This time

the bifurcations are delayed in comparison with the 7-= 1 case. Here

though the spatial dependence of the solutions is slightly different. The

series of snapshots for the toroidal field for values of the dynamo

number that give modulated waves in Figure 23, shows that although

there are still two layers of magnetic field, the slow-moving magnetic

field (at the bottom of the box) has a similar horizontal scale to that in

the fast-moving magnetic field. This can be ascribed to the increase in
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FIGURE 22 Solutions for r = 0.5. Magnetic energies for (a) D = -50, (b) D = 200, (c)
D = - 500.

7- leading to a larger scale for the magnetically driven velocity per-

turbations. Apart from the scale of the field and velocity perturba-

tions, the solutions are similar to those for r = 1, and the sequence of

bifurcations is certainly the same - a succession of Hopf bifurcations

followed by breakdown of a tours leading to spatio-temporal of

chaos. The spatial dependence of the chaotic solutions is slightly

different to that for r = 1, but in all other respects the solutions are
similar.

6.2.4. A Note on Very Low Prandtl Numbers

So far in this section only O(I) values of 7- have been considered. As

noted in the previous section, changing the value of the magnetic
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FIGURE 23 Magnetic licld Modulated _,a,_cs for r 2: As for Figure 14, but 7- 2

and 1) 250. This linle lhe magnetic ticld gcllcratcd by the velocity perturbations has
tile same horizontal scale as thai generated by' lhc imposed shear. (See ('olor Plate rill).

Prandtl number by an order of magnitt, de presents problems for the

nt, merical scheme in the model where the diffusivity is a function of

position. However the effects of very low Prandtl numbers can be

examined in the constant-t/ model discussed in Section 6.2.2. A

thorough investigation of parameter space is certainly not possible in

this case. as it takes very nlany magnetic diffusion times for transients

to die away. For this reason only some preliminary results have been

obtained. The results of this section have led to investigation of the

consequences of including the Malkus-Proctor effect with a low value
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of'r in a global dynamo model where the variation of parameters with

latitude is included (Tobias 1996a, 1997).

Here the magnetic Prandtl number is set to be 0.01 and numerical

integrations are performed for a selection of dynamo numbers. We are

primarily interested in the behaviour of solutions for large(ish) values

of [D[. The models already discussed do produce chaotic modulation

of the basic magnetic cycle, but this is a weak effect, with the

amplitude of modulation small in comparison to the amplitude of the

basic cycle. So it is important to ascertain whether the low-r limit

yields solutions where the magnetic energy is substantially modulated

and where periods of greatly reduced activity (corresponding to

minima) can be detected.

The first value of the dynamo number investigated was D = 2100,

which is far in the nonlinear regime. The results are shown in Figure 24.

The times series for both the magnetic and kinetic energy are periodic.

This indicates that the solutions have undergone both a primary Hopf

bifurcation to travelling wave (constant energy) solutions and a

secondary Hopf bifurcation to quasiperiodic solutions (with periodic
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FIGURE 24 Period-2 orbit: Low r solutions for r-0.0l, D= 2100. (a) Average

magnetic energy' as a function of time. It is important to remember that the basic

magnetic cycle has been removed from this time series by averaging. The time series

therfore gives the amplitude of the modulation, there are episodes when the magnetic

energy reduces drastically, to zero. (by As for (a), but for the average kinetic energy. (c)
Phase-plane trajectory inergy space. Graph of (B e} vs (v 2}.
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average energies). Apparently the solution has also undergone a

subsequent period-doubling bifurcation. The figure clearly shows that

the modulation of the basic cycle (which has been removed by the

averaging procedure) is a large effect and that there are episodes when
the magnetic energy is very small.

Chaotic modulation can be found if the magnitude of the dynamo

number is increased further, as in Figure 25 where solutions for

D= 2500 are shown. The kinetic and magnetic energy are both

irregularly modulated and the attractor in phase space appears to be

chaotic. The modulation is still a large effect and many episodes of
reduced activity are detected here.

These results give an indication of how solutions behave if the

magnetic Prandtl number is reduced by an order of magnitude. It

seems a though the low-T limit leads to significant amplitude

modulation of the basic magnetic activity. The low value of the

Prandtl number makes larger velocity perturbations easier to excite,

thereby increasing the amplitude of the modulation.
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FIGURE 25 Chaotic orbit: Lot T solutions for r = 0.01, D =-2500. (a) Average
magnetic energy as a function of time. (b) As for (a), but for the average kinetic energy.
(c) Phase-plane trajectory in energy space. Graph of (h2) "¢S (v 2 ). Both the magnetic and
kinetic energy are now ch_,otically modulated.
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6.3. Summary for Malkus-Proctor Nonlinearities

The coupling of the dynamo equations to the mean momentum

equation has been studied in two separate cases. In the first problem,

velocity perturbations that were independent of z were driven by the

averaged Lorentz force. This system produced travelling wave

solutions that were stable for all values of the dynamo number D

and in this respect the solutions were the similar to those found for the

simple quenching mechanisms discussed in Section 5. It is interesting

to note that the magnetic field generated velocity perturbations away

from the region of strongest magnetic field, differing from the

quenching mechanisms where only local action of the magnetic field

can be modelled. The wavespeed increased substantially with

increasing dynamo number.

Interesting time-dependent behaviour was only achieved if the local

field was allowed to interact with the velocity in the mean momentum

equation. The important features of the bifurcation sequence are

robust to changes in the parameters and even to changes in the profile

for the diffusivity. The trivial state becomes unstable to dynamo action

in a Hopf bifurcation (which is usually supercritical) to travelling wave

solutions. Solutions are steady in a frame moving with the wavespeed

and the average magnetic and kinetic energy are constant. These

travelling waves lose stability in a secondary Hopf bifurcation as the

dynamo number is further increased - the average energies now'

oscillate about a mean value. A further (tertiary) Hopf bifurcation

leads to motion on a two-tours in 'average energy space' (or a three-

torus in 'magnetic field space'). Solution that exhibit spatio-temporal

chaos are found as the dynamo number is increased further and the

torus breaks down. It is also possible to find other bifurcations

(pitchfork and gluing bifurcations) if the parameters are chosen

carefully, but these are not essential parts of the bifurcations to chaotic

solutions. Complicated spatial dependence of solutions is also found

but this is a secondary effect. The most significant modulation was

obtained when the magnetic Prandtl number (7-) was set to be small.

The route to chaos is therefore exactly the same as that found in the

sixth-order model of Weiss et al. (1984). In coordinates moving with

the wavespeed, the initial Hopf bifurcation becomes a pitchfork and

the bifurcation structure is now the same as the simpler model of Jones
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et al. (1985). It is important to understand why the system must

undergo three Hopf bifurcations before chaotic behaviour can be

found. The frequency introduced in the Hopf bifurcation to travelling

waves is removable (as described above) and if this frequency is

removed the travelling waves can be thought of as steady solutions.

This was noted by Ruelle (1973) for waves in a rotating system (but the

extension to periodic systems is immediate). With the frequency

removed, the fixed point must undergo two further Hopf bifurcations

before frequency-locking and the formation of a chaotic attractor via

the breakdown ofa torus can occur (Rand, 1982). So here the route to

chaos is slightly different from that for the case where the system has

boundaries in Tobias (1996a). There the initial Hopf bifurcation was

not to travelling waves, but to genuinely periodic solutions and the

frequency of oscillation was not removable. Therefore only one more

Hopf bifurcation was required to introduce the possibility of

frequency-locking and breakdown of the torus.

It is therefore only due to the artificial nature of the periodic

boundary conditions that the system must undergo a tertiary

bifurcation before chaotic solutions may be found. In systems with

more realistic boundary conditions this may occur after only two Hopf

bifurcations and this is therefore the genetic scenario for transition

to chaos in these dynamo models.

7. CONCLUSION

The explanation of the origin of magnetic activity in the sun and stars

provides a challenge to the theoretician. In the past this challenge has

been met in a rather ad-hoc and haphazard way. Many nonlinear

dynamo models have been proposed and results exhibited, but relatively

little has been learned of the underlying structure of nonlinear dynamos.

The models have only scraped the surface of the problem the results

arc clear, but what are their consequences for stellar magnetic field

generation'? Is the behaviour found model-dependent, and if not why is it

a robust feature of the dynamo problem?

By carrying out a systematic investigation of a simple dynamo

mode[, I have attempted to provide a clear and coherent picture of the
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r61eof nonlineareffectsinmean-fielddynamos.Giventhatthereisso
muchthat is poorlyunderstoodaboutthenatureof thedynamo
problem,it isonlybyinterpretingtherestlltsin tilelightof therecent
advancesindynamicalsystemstheorythatprogressmaybemade.We
needto separateouttherobustbehaviouranddiscardanyresultsthat
aremodel-dependent.An understandingof thefundamentalproper-
tiesof nonlinearsystemsisessentialinorderto achievethis.

Localtravellingsolutionsdoyielda greaterunderstandingof the
consequencesof nonlinearitiesfortheradialdependenceof solutions.
Moreover,muchcanalsobe learnedaboutthe consequencesof
includingsimplequenchingmechanisms.Quenchingof theturbulent
diffusionis foundto havea moresubtleetTectthaneithern.or _,-
quenching,asit modifiesthespatialstructureof solutions.However,
theunrealisticchoiceof(periodic)lateralboundaryconditionsforthis
local modelimpliesthat any globalproperties(e.g.,wavespeed,
frequency)of suchadynanlomaybemisleading(Tobiasel" al., 1997).

This is an important result, as it demonstrates that over-simplified

modeJs may lead to incorrect conclusions about _he behaviour of

dynamos.

Quenching mechanisms, although simple to implement, are un-

realistic parameterizations of the back-reaction of the magnetic field

on the velocity. These mechanisms are instantaneous in time and local

in space a severe restriction on the possible consequences of

including nonlinearities. It is interesting to note that, because of the

simplicity (and local nature) of the quenching mechanisms often used

in nonlinear mean field dynamos, the behaviour of the solutions is not

critically dependent on the precise form of the quenching chosen. This

was shown to be the casse as the imposition of both "averaged' (one-

dimensional) and 'local' (two-dimensional) quenching mechanisms

yielded similar results.

Increasingly complicated spatio-temporal behaviour may be

achieved in a natural way by including an equation for the mean

velocity perturbation driven by the magnetic field (the Malkus-Proctor

effect) as in Section 6. This nonlinearity is more complicated than the

simple prescribed quenching tbrmulae for two reasons. The tirst is that

this nonlinearity is non-local in space. The velocity perturbations are

not driven where the field is largest but where the gradient of the

poloidal and toroidal tields interttct. Hence, for this nonlinearity, the
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resultsaresensitiveto thechoiceof averagedor localinteraction.
Averagedinteractionyieldedresultssimilartothoseforthequenching
mechanisms.already discussed, with travelling waves remaining stable.

However, if local interactions are allowed then the system displays

very different behaviour with the travelling waves becoming unstable

to solutions with more complicated time-dependence.

Moreover the torsional oscillations observed in the sun can be

attributed to such a velocity perturbation. The addition of a separate

evolution equation then allows for a time-lag between the generation

of the field and its effect on the velocity field. This time-lag is

controlled by the magnetic Prandtl number r. It is important to note

that the route to chaos is via a succession of Hopf bifurcations and the
breakdown of a torus similar to that for the low-order model of

Tobias et al. (1995). This is a very important result as it implies that

this mechanism is a robust feature of including the interaction of the

magnetic field with the velocity in a realistic way.

What do the above results imply for modelling dynamo action in the

sun and other stars? By studying the r61e of nonlinearities in isolation,

one can interpret the results of numerical simulations which include

latitudinal dependence of parameters and realistic boundary condi-

tions. Indeed the results included in this paper have already been used

(Tobias 1996a,1997) to construct global models of the solar dynamo.

In those models the low-r limit was successfully exploited to

investigate the nature of Grand Minima, and to ascertain the relative

importance of modulational mechanisms (i.e., the Malkus-Proctor

mechanism and Parity interactions) on solar dynamo models. The

results are promising but further investigations are required to
understand the nature of the interaction of turbulent convection and

magnetic fields so that more realistic models may be constructed in the
future.
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